Попытки разгадать загадку

We use cookies. Read the Privacy and Cookie Policy

Попытки разгадать загадку

14 декабря 1900 года в одной из аудиторий Берлинского университета перед членами немецкого физического общества выступил 40-летний физик Макс Планк. Он изложил новый взгляд на древнее, как мир, понятие — «движение». Свою гипотезу Планк весьма изящно обосновал с помощью выведенной им формулы излучения.

Со времён великих Лейбница и Ньютона в основе науки физики лежал один из основополагающих законов, который гласил: «Natura non facit saltus» — «природа не делает скачков». А Генрих Герц в своей «Механике», вышедшей в 1893 году, особо подчёркивал значение принципа непрерывности как непременной основы любого природного явления.

Планк же дерзнул ниспровергнуть всеми признанный закон, утверждая, что не всё в этом мире происходит непрерывно и плавно. Что иногда случаются скачки и взрывы. И они прекрасно согласуются с открытым им, Планком, «элементарным квантом действия» или «элементом действия» — «h» (эту величину вскоре назовут константой или постоянной Планка).

Учёный мир встретил сообщение Макса Планка с недоверием, если не сказать, с большим неодобрением. А его теорию квантов, которая не вписывалась в законы классической физики, взрывая традиционные представления о природных процессах, было предложено рассматривать как рабочую гипотезу.

Много лет спустя другой физик, француз Луи де Бройль, скажет о Планке, что он выступил «… как возмутитель спокойствия, принуждая физиков решительно пересмотреть и переосмыслить свои взгляды на природу вещей».

Научный мир, как ни сопротивлялся, был всё же вынужден многое «пересмотреть» и «переосмыслить». Потому что формула, предложенная Планком, давала возможность узнать невозможное! Например, определить вес атома. И даже вычислить, сколько атомов содержится в том или ином количестве вещества! «Уже в этом, — скажет через десятилетия немецкий физик Вернер Гейзенберг, — первый неоспоримый успех квантовой механики».

Одним из тех, кто сразу и безоговорочно поверил Планку, был Альберт Эйнштейн. Поверил и пошёл дальше, выведя на основе положений квантовой механики свою теорию света, согласно которой свет представляет собой сплошной дождь быстро движущихся квантов (или фотонов).

Это неожиданное утверждение поначалу тоже озадачило очень многих, в том числе и самого Макса Планка. Однако теория Эйнштейна с обезоруживавшей простотой объясняла множество доселе необъяснимых физических явлений, ставивших в тупик классическую физику. Кроме того, она установила связь между такими, казалось, несопоставимыми понятиями как энергия и масса: Эйнштейн предложил формулу (простую, как всё гениальное): E = mc2, и вскоре весь мир взял её на вооружение.

Когда Макс Планк разобрался во всём этом, он признал и горячо поддержал теорию относительности.

Что же касается загадок радиоактивности, то разгадать их взялся один из крупнейших физиков ХХ века англичанин Эрнест Резерфорд. Он (вместе с другим британским учёным — Фредериком Содди) выдвинул теорию, которая гласила:

«Радиоактивность возникает тогда, когда атом отторгает частицу самого себя, выбрасывая её с огромной скоростью, в результате чего один химический элемент превращается в другой».

Это утверждение звучало как невероятная несусветность. Стоит ли удивляться, что научный мир встретил его, что называется, в штыки. Ведь оно противоречило общепринятым представлениям, согласно которым атомы считались неделимыми и неизменными. Постулат Резерфорда и Содди был объявлен перепевом давным-давно отвергнутых взглядов средневековых алхимиков.

Однако Резерфорд твёрдо стоял на своём, и в 1911 году объявил о новом открытии. Оно состояло в том, что считавшийся неделимым и очень просто построенным атом на самом деле имеет очень сложное строение, напоминающее солнечную систему. В центре находится тяжёлое положительно заряженное ядро, а вокруг него вращаются лёгкие электроны, заряженные отрицательно.

Подобная «планетарность» означала, что атом вполне может разрушиться, расколовшись на части. Из-за этого «раскола», считал Резерфорд, один элемент и превращается в другой, и возникает загадочное «радиоактивное излучение», которое является ничем иным как летящими во все стороны с огромной скоростью осколками атома. Так, к примеру, элемент радий, расколовшись, превращается в радиоактивный радон (с тяжёлым ядром) и в гелий (с ядром более лёгким), испуская при этом невидимые глазу лучи.

Кстати, с лёгкой руки Эрнеста Резерфорда атомы гелия стали называть «альфа-частицами».

И ещё Резерфорд высказал предположение, что атомный распад должен сопровождаться выделением энергии. В количестве, возможно, довольно значительном.

Новые теории физиков-реформаторов переворачивали с ног на голову веками устоявшиеся представления о природе вещей! Всё первое десятилетие ХХ века ушло на то, чтобы как следует «переварить» непростые для понимания «лучистые» атомные открытия. Но, «переваривая», благодарное человечество не скупилось на награды первооткрывателям. В 1903 году Беккерель и супруги Кюри были удостоены Нобелевской премии. Пять лет спустя такую же награду получил и Резерфорд. А в 1921-ом Нобелевским лауреатом стал Содди.

Казалось бы, всё встало на свои места!

Но…

При всей привлекательности теории Резерфорда в ней был один существенный пробел. Ведь если атом, на самом деле, построен по образцу солнечной системы, то электрон, вращающийся вокруг ядра, должен, теряя энергию, в конце концов, упасть на ядро. Однако этого не происходит! Электроны не падают! Атомы стабильны!

Почему?

Как объяснить сей парадокс?

Расставить всё по своим местам (с помощью всё той же квантовой механики) взялся 28-летний датский физик Нильс Бор. В 1913 году он выдвинул гипотезу, согласно которой электроны не могут испускать энергию непрерывно — в этом случае никакой энергии не хватит! По мнению Бора, электроны теряют свою энергию или приобретают новую, лишь переходя с одной орбиты на другую. Иными словами, совершая некий «квантовый» скачок. Если же они находятся на своих постоянных (стабильных) орбитах, никакой энергии не выделяется.

Были в предложении датчанина и другие тонкости. Ни наглядностью, ни тем более очевидностью они не отличались. Поэтому для большинства тогдашних учёных модель «атома Бора» выглядела очень странно и даже мистически.

Зато она (как в случае с Планком и Эйнштейном) очень хорошо объясняла физические явления, которым никак не удавалось найти убедительного толкования. Например, научный мир давно уже интересовал вопрос: почему атомные спектры представляют собою набор линий? Гипотеза Бора разъясняла, что каждая линия соответствует той вспышке, тому излучению, испускаемому атомом, когда его электроны переходят с верхней орбиты на нижнюю, теряя при этом часть своей энергии.

Вроде бы, логично. Но к этому надо было ещё привыкнуть.

Данный текст является ознакомительным фрагментом.