Глава 5 Лучи смерти

We use cookies. Read the Privacy and Cookie Policy

Глава 5

Лучи смерти

Если сгенерировать и передать большое количество энергии в одну точку, находящуюся, скажем, в столице враждебного государства, то можно вызвать там мощнейший взрыв. А если удастся создать достаточно компактный аппарат, позволяющий направлять сфокусированную энергию на объекты противника хотя бы в пределах прямой видимости, то у армий мира появится новейшее оружие, которое коренным образом изменит тактику ведения войны. Соответственно, кто успеет раньше, тот и будет победителем в грядущей мировой войне, которая в начале ХХ века представлялась неизбежной.

А. Первушин.

Тайны забытого оружия. Один шаг до конца света

Рис. 5.1. Лучевое оружие марсиан. Кадр из фильма «Война миров» (2005, режиссер Стивен Спилберг), поставленного по одноименному роману Г. Уэллса

Вообразите себе табурет, стоящий на трех блестящих суставчатых металлических ножках, высотою с многоэтажный дом, и двигающийся, перебирая этими ногами, как какой-нибудь треногий паук. Только что видели вы его вдали отклоненным слегка назад, как уже видите его метров на 100 ближе, наклоненным вперед и с двумя ножками, поднятыми на воздух для следующего шага. Вся машина шагала через лес. Медная блестящая голова, сидевшая на треножнике, повертывалась во все стороны, очевидно, что-то высматривая и руководя движением. Сзади треножника и немного ниже его головы находилась большая корзина из белых металлических прутьев, из которой, равно как из всех сочленений, периодически выскакивали клубы зеленоватого дыма. В одной из своих суставчатых лап треножник держал нечто вроде ящика, из которого вырывался луч слабого света, передвигавшегося с места на место. Вдруг луч этот упал на группу людей, на кусты и деревья, стоявшие в отдалении за этой группой, на голую землю, находившуюся под ними, – и все, на что он падал, мгновенно воспламенялось, доходя до белокалильного жара; все горело, испуская ослепительный свет…

Г. Уэллс.

Война миров

Ученые не решили, в чем, собственно, состояло смертоносное оружие марсиан. Большинство предполагало, что они сумели каким-то образом произвести и концентрировать невидимые тепловые лучи в абсолютно не проводящей тепла камере. Эти тепловые лучи, отраженные параболическим рефлектором, вроде того, как отражаются лучи света на маяках, марсиане, находящиеся внутри головы треножника, пропускали, вероятно, сквозь какую-нибудь двояковыпуклую линзу с фокусом, по произволу отдаляемым и приближаемым, который и направляли на любой предмет, подлежащий уничтожению. Все предметы, на которые был направлен этот луч, разрушались от огня: растительные и животные ткани горели, свинец и даже стекло плавились до совершенно жидкого состояния, сталь становилась мягкой, а вода, даже в поверхности больших ее вместилищ (рек, озер, морей), мгновенно превращалась в пар.

Г. Уэллс.

Война миров

Такие устрашающие картины нашествия инопланетного разума рисовал в своем знаменитом романе «Война миров», написанном еще в конце XIX в., Герберт Уэллс, создатель не только новой научно-фантастической литературы, но и гипотетического лучевого оружия.

В конце первой четверти прошлого века тема загадочных «лучей смерти» достигла «пика популярности». Газетные сенсации следовали одна за другой. Кто только ни объявлял об открытии фантастических смертоносных излучений – ученые, инженеры, изобретатели, техники и… фокусники. Даже сам Гульельмо Маркони, итальянский делец-радиотехник, которому во многих зарубежных публикациях совершенно безосновательно приписывали изобретение радио, которое на самом деле принадлежит А. С. Попову, не смог обойти благодатную ниву «лучей смерти». Заявив Бенито Муссолини о том, что готов предоставить в его распоряжение чудесное оружие, которое будет уничтожать солдат противника и останавливать боевую технику, Маркони получил от диктатора пост президента Итальянской академии наук и финансирование любых своих исследований. Однако в данном случае красть было негде и ничего, ведь никто в отличие от научного альтруиста А. С. Попова не собирался подробно рассказывать в печати о своих реальных открытиях. Единственное, что мог придумать горе-изобретатель, – это огромное устройство размером со столитровую бочку, которое он назвал «радиосверхмина». Несмотря на безудержную рекламу, это устройство могло только серией радиоимпульсов кратковременно прерывать работу автомобильных магнето….

Успех, конечно же, совершенно смехотворный даже по сравнению с самыми простыми обычными минами! Однако это не помешало плагиатору в академической мантии до конца своих дней совершенно безосновательно утверждать, что именно он изобрел не только радио, но и самые настоящие «лучи смерти».

Подобно Маркони огромное количество проходимцев и просто жуликов умело использовали ажиотаж бульварной прессы вокруг таинственного «лучевого сверхоружия». Печатались книги, статьи и масса интервью с самыми разнообразными представителями науки и техники. Энергично поддерживали сенсационные сообщения о «лучах смерти» магнаты военной промышленности. Живейший интерес проявляли военные ведомства многих стран. Досужие журналисты бульварной прессы в конце концов сумели довести тему «лучей смерти» до полного абсурда. Так, они договорились до того, что где-то в дебрях Амазонки (наверное, в Стране Мэпла Уайта из «Затерянного мира» Конан Дойла) существует специальная промышленность, производящая… аппараты, извергающие «лучи смерти». Нездоровый ажиотаж подогревался загадочными взрывами дредноутов, изредка происходящими во всех портах мира из-за неумения обращаться с новым опасным пироксилиновым порохом. Флотское руководство, ссылаясь на призрачные «лучи смерти», нашло прекрасный способ списывать свое головотяпство и безалаберность на неизвестных террористов, при каждом удобном моменте облучающих их корабли и подводные лодки.

Военная истерия Первой мировой войны затмила все скандалы с фокусниками и аферистами, более того, началась самая настоящая гонка лучевых вооружений. Одним из ее главных героев оказался английский электротехник Гарри Гринделл Мэтьюс. Бульварные издания с восторгом рассказывали, как этот «изобретатель» на расстоянии в несколько метров наводил на работающий мотор свой «чудесный прожектор». Под действием таинственных невидимых лучей мотор тут же начинал работать с перебоями, а потом и полностью останавливался вследствие короткого замыкания тока в магнето. Затем в маленькую чашку, укрепленную на лабораторном штативе, насыпали немного пороха. Мэтьюс направлял на чашку свой прожектор, и из невидимого луча подобно молнии выскакивало синее пламя, воспламеняющее порох.

Выдающийся французский физик Поль Ланжевен, изобретатель эхолота и принципов его применения в эхолокации, дал совершенно точную характеристику «дьявольским лучам Мэтьюса», как называл их сам изобретатель:

Что касается Гринделла Мэтьюса, то этот субъект никогда не был ничем иным, как рецидивистом-мошенником. Заявив о том, что им изобретены «лучи смерти», он предложил устроить официальное испытание его изобретения над подводными минами. Действительно, ему удалось взорвать мину, направив на нее луч.

Но только впоследствии обнаружили, что тут был пущен в ход хитрый трюк: к капселю мины был пристроен фотоэлектрический элемент, и стоило лишь направить на него луч света, как получился требуемый эффект. Ловко придумано, но ничего нового в этом нет… Весьма характерно, что Гринделл Мэтьюс вскоре переселился во Францию, проклиная неблагодарное отечество. Затем он отправляется в США, где вся его авантюра кончилась тем, как обычно там и кончаются подобные вещи: сделали фильм[34].

После целого ряда скандальных разоблачений разнообразных «смертоубийственных излучений» внимание желтой прессы обратилось на «новые таинственные» лучи, с помощью которых управлялись на расстоянии различные устройства. Логика рассуждений в этом случае была очень проста – раз энергии лучей хватает на то, чтобы приводить в движение автомобили, катера и даже танки, то, конечно же, в них таится и смертельная сила, которую надо только открыть.

Все это создавало питательную среду для шумных афер. Так, в 1913 г. некий итальянский «инженер-химик» Джулио Уливи предложил адмиралтейству Великобритании уникальный способ подрыва мин с помощью открытых им таинственных невидимых лучей. Как умудрились английские адмиралы принять бредовое предложение совершенно неизвестного изобретателя, до сих пор остается интересной загадкой. Тем не менее Уливи оказался талантливым организатором «военно-морских шоу». На показных выступлениях специально подготовленные морские мины отплывали от берега и взрывались после эффектного щелчка тумблера, расположенного на большом черном полированном ящике. Однако когда дело дошло до контроля подготовки эксперимента и открытия секрета подрыва мин загадочными лучами, изобретательный «инженер-химик» и стал требовать огромного аванса.

Здесь наконец-то возобладал здоровый британский скептицизм, и «изобретателю» пришлось срочно вернуться в родные пенаты. Для эксплуатации его открытия было создано акционерное общество, акции которого в преддверии войны хорошо раскупались. Никто не сомневался в надежности вложений, ведь «химик» вовремя оборвал эксперименты за рубежом, а в Италии начал их как бы «после зарубежной проверки». И все же в конце концов Уливи оказался перед необходимостью взорвать лучами обычную морскую мину, а не ту, которую он подготавливал в своей лаборатории. Конечно же, «гениальный изобретатель» тут же исчез… Проведенное по горячим следам расследование показало, что аферист просто снабжал мины примитивными химическими взрывателями, рассчитанными на определенное время срабатывания.

Конечно, изредка встречались и грамотные рассуждения, указывающие на реальные возможности, которые таит в себе применение дециметровых волн в военном деле. Ведь уже в середине 1930-х гг. известная немецкая фирма Telefunken продемонстрировала большой радиоуправляемый катер, на котором могли прокатиться несколько человек. Метод радиоуправления был довольно прост: на катере устанавливались два детектора сантиметрового излучения, которые включали и выключали два мотора, а на берегу работали два небольших параллельных магнетрона, обеспечивающие «курсовой коридор». Если катер двигался по «заданному навигационному курсу», не выходя за границы «курсового коридора», то работали оба мотора, вращая два винта. Если же катер хоть немного отклонялся от прямой линии, один из СВЧ-детекторов отключался вместе с мотором, и второй двигатель возвращал его на исходный маршрут. По такому же принципу создавались радиоуправляемые автомобили и даже легкие танки.

После краха своего проекта «Мировой системы» Тесла, следуя веяниям времени, несколько раз обращался к теме «лучей смерти». Более или менее достоверно известно, что в 1930-е гг. изобретатель неоднократно подавал на конкурс секретные проекты для военно-морского ведомства США. В основном это были полуфантастические схемы действия «беспроводного резонансного оружия». Сюда входило «силовое воздействие направленных электроэфирных полей», обстрел противника искусственными «плазмоидами Теслы», создание облаков «электромагнитного тумана» и прямое поражение живой силы и техники противника «лучами смерти Теслы». Предполагается, что для своего «пучкового оружия» изобретатель использовал очень емкие воздушные конденсаторы собственной конструкции («конденсаторы Теслы»). В его дневниках и лабораторных записях встречаются поражающие воображение сведения, что удавалось зарядить «конденсаторы Теслы» до напряжения в несколько сотен тысяч вольт. Разряд батарей подобных конденсаторов питал некий «резонансный излучатель» мощнейших импульсов электромагнитного излучения дециметрового диапазона. При этом Тесла утверждал, что ему удавалось варьировать напряжение пробоя искрового промежутка и что изменение течения разряда порождало мощный импульсный ток в первичной обмотке, который и генерировал СВЧ-радиоволны.

В последние годы жизни изобретателя его очень занимало влияние СВЧ-излучения на животных и человека, в частности, на органы внутренней секреции, сердечную деятельность и работу головного мозга. В одном из своих последних интервью незадолго до смерти Тесла заявил изумленным журналистам, что ему удалось открыть некую совершенно новую разновидность «лучей смерти», способных уничтожать тысячи самолетов с расстояния в сотни километров. При этом изобретатель расплывчато объяснял, что основой его «лучевого орудия» служит некий «осциллятор радиочастот», который позволяет транслировать энергию в атмосфере и фокусировать ее на различных движущихся целях.

Между тем 13 декабря 1932 г. в кабинете председателя Реввоенсовета СССР М. Н. Тухачевского собрались академик А. Ф. Иоффе, член-корреспондент В. В. Шулейкин и профессор А. А. Черкашов, чтобы обсудить установку для генерации «лучей смерти». На самом деле в Комбинате физико-технических институтов[35], руководимом Иоффе, спроектировали даже две установки: на 5 и 10 МВ. «Лучи смерти», по заявлению Иоффе, должны были смертельно поражать людей на расстоянии от 300 до 400 м. По результатам совещания была принята резолюция о дальнейшем развитии работ по «лучам смерти» в Государственном физико-техническом институте. Нарком К. Е. Ворошилов даже подготовил специальный доклад о новом «лучевом оружии» председателю Совнаркома В. М. Молотову, и в конечном результате работы стали курировать Г. К. Орджоникидзе и Г. Г. Ягода. Чем закончились подобные исследования, доподлинно неизвестно, но, судя по всему, они остановились на этапе создания опытных образцов, поскольку питание установки требовало слишком мощного стационарного электрогенератора.

Еще один довольно любопытный проект приблизительно в тот же период предоставил инженер Н. И. Смирнов. Его «лучевое орудие» должно было использовать радиоволны УКВ-диапазона и не уничтожать живую силу противника, а лишь глушить моторы вражеских самолетов. По идее изобретателя, УКВ-излучение должно было создавать резонансные токи в системе зажигания авиационных двигателей, тем самым выводя их из строя. К сожалению, натурные испытания показали крайне низкую эффективность УКВ-пушки, с трудом глушившей самолетные моторы на расстоянии в несколько десятков метров.

Тут надо вспомнить, что в 1930-е гг. оборонные исследования стали поступать во многие советские НИИ. Следы таинственной совсекретной темы, связанной с пресловутыми «лучами смерти», можно найти в спецтематике Украинского физико-технического института (УФТИ). Надо сразу заметить, что подобный выбор направления научно– исследовательских работ (НИР) был далеко не случаен, ведь компетентные специалисты в наркомате тяжелого машиностроения СССР были прекрасно осведомлены о том, что в УФТИ с большим успехом разрабатывалась радиофизическая тематика. Этот институт в связи с общей тенденцией развития радиотехники в направлении сверхвысоких частот (СВЧ) раньше других развернул по своей инициативе теоретические и экспериментальные исследования в области генерирования электромагнитных волн магнетронами в дециметровом и сантиметровом диапазонах. Впоследствии оказалось, что эти исследования внесли существенный вклад в развитие техники радиообнаружения, хотя подобные вопросы в то время еще не ставились на повестку дня.

Стоит заметить, что история отечественной радиолокации начинается еще с исследований А. С. Попова, который однажды, работая с первыми радиоприемопередатчиками, сделал важное открытие. В 1897 г. во время опытов по передаче сообщений с помощью «беспроводного телеграфа» между кораблями он обнаружил явление отражения от одного из них радиоволн. Радиопередатчик был установлен на верхнем мостике транспорта «Европа», стоявшего на якоре, а радиоприемник – на крейсере «Африка». В отчете комиссии, назначенной для проведения этих опытов, А. С. Попов писал:

Влияние судовой обстановки сказывается в следующем: все металлические предметы (мачты, трубы, снасти) должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают ее правильность, отчасти подобно тому, как действует на обыкновенную волну, распространяющуюся по поверхности воды, брекватер[36], отчасти вследствие интерференции волн, в них возбужденных, с волнами источника, то есть влияют неблагоприятно. <…>

Наблюдалось также влияние промежуточного судна. Так, во время опытов между «Европой» и «Африкой» попадал крейсер «Лейтенант Ильин», и если это случалось при больших расстояниях, то взаимодействие приборов прекращалось, пока суда не сходили с одной прямой линии[37].

Этим открытием А. С. Попова было положено начало новому средству наблюдения – радиолокации. Несовершенство техники не позволило тогда же использовать его для создания практически приемлемых приборов; на это потребовалось еще около 40 лет.

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привело к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым, получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя М. Н. Тухачевского.

3 января 1934 г. в СССР был успешно проведен эксперимент по обнаружению самолета радиолокационным методом. Аэроплан, летящий на высоте 150 м, был обнаружен на расстоянии 600 м от радарной установки. Эксперимент был организован представителями Ленинградского электротехнического института и Центральной радиолаборатории. В 1934 г. маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолетов с помощью электромагнитного луча подтвердили правильность положенного в его основу принципа». Первая опытная установка «Рапид» была опробована в том же году, а в 1936 г. советская сантиметровая радиолокационная станция «Буря» засекала самолет с расстояния 10 км. Первыми РЛС в СССР, принятыми на вооружение и выпускавшимися серийно, были РУС-1 (с 1939 г.) и РУС-2 (с 1940 г.). Во время войны программу по созданию советских радаров возглавлял инженер-адмирал Аксель Берг, широко использовавший разведданные из Германии, Британии и Америки.

В послевоенные годы многие видные американские радиофизики неоднократно отмечали, что советские ученые успешно разработали теорию радара за несколько лет до того, как подобные исследования стали проводиться в Англии и США.

Работы по радиолокации были начаты и в харьковском УФТИ. Дальнейшие исследования в этой области проводились в отделе электромагнитных колебаний УФТИ, научным руководителем которого с 1930 г. был известный советский радиофизик А. А. Слуцкин. Абрам Александрович еще в конце 1920-х гг. провел в УФТИ несколько НИР с целью разработать мощные радиоэлектронные приборы – «магнетроны со сплошным анодом», в принципе позволявшие получать сильно сфокусированные потоки электромагнитных волн микроволнового диапазона. В 1932–1933 гг. молодые научные сотрудники УФТИ Е. А. Копилович, А. Я. Усиков и другие под руководством Слуцкина разработали магнетроны с многосегментным анодом, позволяющие получить в пике импульса киловаттные энергии излучения на дециметровых волнах.

Результаты теоретических и экспериментальных работ группы Слуцкина были опубликованы в 1935 г. в «Журнале технической физики». Это было довольно авторитетное издание в мире науки, поэтому переводы статьи тут же появились в ведущих западных изданиях, породив довольно много публикаций, относящихся к вопросу генерации дециметровых волн магнетронами с многосегментным анодом. Однако вопрос о механизме возбуждения колебаний был разработан недостаточно, в частности, не были выведены формулы, позволявшие производить хотя бы приближенный расчет магнетронных генераторов. Профессор Слуцкин считал необходимым изучить этот вопрос более обстоятельно и глубоко, чтобы дать возможность производить расчеты магнетронных генераторов любого заданного типа. В дальнейшем, анализируя механизмы возбуждения магнетронного генератора, Абрам Александрович пришел к выводу, что в магнетронах с многосегментными анодами могут возникать колебания двух типов.

К первому относятся колебания, аналогичные тем, что возникают в магнетроне со сплошным анодом, период которых определяется временем пролета электронов от катода к аноду. Механизм возбуждения колебаний этого типа раньше был изучен в УФТИ.

К колебаниям второго типа профессор Слуцкин относил такие, период которых определялся параметрами колебательного контура в цепи анода. Возникновение этих колебаний происходило, когда время пролета электронов было мало по сравнению с соответствующим периодом колебаний контура.

В результате проведенной работы были найдены условия самовозбуждения магнетронов с многосегментным анодом; изучены характеристики и соотношения токов анода и напряжений; найдены выражения для мощности магнетрона в различных режимах излучения и определены условия получения максимального потока волн СВЧ, а также изучено влияние на характеристики изменений анодного напряжения и магнитного поля.

Впервые результаты исследований магнетронных генераторов, полученные профессором Слуцкиным, были использованы для создания установок по радиообнаружению в 1934 г., когда УФТИ начал поставлять для конструкторского бюро Управления противовоздушной обороны РККА магнетроны различной мощности, рассчитанные на разные длины волн.

В середине 1930-х гг. научные сотрудники лаборатории электромагнитных колебаний Слуцкина выполнили расчеты магнетрона в стеклянной колбе с водяным охлаждением для генерирования сверхбольших мощностей в дециметровом диапазоне. Большую роль в этих научно-исследовательских работах сыграли модельные построения будущего видного радиофизика С. Я. Брауде, которые показали возможность получения в непрерывном режиме колебательных мощностей, превышающих десятки киловатт. В то же время на основе расчетов Семена Яковлевича была разработана и осуществлена конструкция цельнометаллического магнетрона непрерывного режима мощностью в два десятка киловатт на волнах дециметрового диапазона.

Параллельно с разработкой генераторов с фиксированными частотами излучения инженер Брауде предложил проект перестраиваемого магнетрона, позволявшего менять рабочую волну в довольно широких пределах. Это достигалось изменением индуктивности контура магнетрона путем удлинения или укорочения его выводов за пределами металлического баллона.

С марта 1937 г. коллектив УФТИ от работ по исследованиям магнетронных генераторов перешел к комплексной работе создания импульсной станции для зенитной артиллерии. В июле того же года УФТИ закончил разработку проекта «электромагнитного прожектора по воздушным целям ближнего действия», включавшего мощный импульсный магнетрон. В середине 1938 г. УФТИ изготовил опытный электромагнитный прожектор «Зенит» и провел его полевые испытания, которые показали дальность уверенного обнаружения самолетов на расстоянии нескольких километров. Для начала работ такой результат был вполне закономерен: он оказался сопоставим с зарубежными аналогами, но с иными техническими параметрами радиоустановок, т. е. с другой волной и мощностью излучения и другим методом генерирования и радиоприема. В мае 1939 г. Управление связи РККА заключило с УФТИ новый договор на усовершенствование аппаратуры «Зенит» с целью увеличения излучаемой мощности и повышения надежности в работе.

В конечном итоге творческому коллективу (в духе того времени подобное научное подразделение именовалось «бригадой») А. А. Слуцкина удалось создать опытные образцы магнетронных генераторов СВЧ-колебаний с уникальными характеристиками, намного превышающими по всем параметрам зарубежные аналоги. И в последующие годы профессор Слуцкин со своими сотрудниками и учениками весьма успешно разрабатывал методы получения мощных потоков дециметровых волн.

Конечно же, параллельно с развитием методов радиолокации стали появляться и всевозможные способы сокрытия от зондирующих радиоволн. Более того, поскольку свет является по своей природе тем же самым электромагнитным излучением, что и радиоволны, некоторые изобретатели попытались расширить методы радиолокационной защиты на видимую часть спектра…

Данный текст является ознакомительным фрагментом.