Человеческий фактор

We use cookies. Read the Privacy and Cookie Policy

Человеческий фактор

Николай Юрьев

В 1909 г. — начальник отдела Донгузского полигона, в 1976 г. — заместитель начальника полигона

100-мм зенитная пушка КС-19

Этот термин часто употребляется в последнее время и воспринимается как ошибка в управлении или в эксплуатации определенных технических средств (самолета, корабля, автомобиля и др.), приведшая к чрезвычайному происшествию, аварии, катастрофе. Как правило, причиной этих явлений чаше всего (с точки зрения т. н. «человеческого фактора») является нарушение или отступление от инструкций, правил, порядка эксплуатации изделий.

Мы же поговорим об этом самом «человеческом факторе» при испытаниях военной техники и вооружения.

Проявление «человеческого фактора». допущенное при испытаниях, может сказаться через неопределенное, иногда довольно длительное время. Маршал артиллерии П.Н. Кулешов, посещая полигон и беседуя с инженерами-испытателями, не уставал повторять: «Ошибка, допущенная вами на испытаниях при оценке технических и боевых характеристик опытного объекта, поступит в войска многократно повторенная в виде серийных образцов, поставляемых на вооружение». Поэтому на полигоне, как нигде, особо важно и весомо значение народной мудрости: «Семь раз отмерь — один раз отрежь». Ведь полигон, по суги, является последней инстанцией, мерилом соответствия образца заданным тактико-техническим характеристикам.

Как правило, проявление «человеческого фактора» обуславливается несовершенством методик испытаний. Несовершенство же методик объясняется в ряде случаев новизной образца (отсутствие прототипа) и, соответственно, отсутствием уже отработанных и проверенных на практике методик, а также необходимых для испытаний специального оборудования и техники, не всегда имеющихся к началу испытаний на полигоне. ну и, конечно же, неподготовленностью и недостаточной ответственностью испытателей. Однако последнее — неподготовленность испытателен — компенсируется тем. что на первоначальном этапе к проведению испытании широко привлекаются специалисты (вплоть до операторов систем и боевых расчетов) иредприятий-разработчиков, а также тем, что испытания проводятся под руководством комиссий (совместных, государственных. полигонно-войсковых), возглавляемых высококвалифицированными специалистами. Необходимые же приборы, аппаратура и оборудование должны при необходимости создаваться и поставляться на полигон разработчиками соответствующих систем и элементов комплекса. что. кстати, не всегда выполняется, особенно при срыве сроков разработки основного образца. Как говорится. не до жиру — быть бы живу.

В конце 1950-х гг. для управления огнем батареи 57-мм зенитных пушек С- 60 в НИИ-20 Министерства вооружения под руководством М.М. Косичкина был разработан, испытан на полигоне и принят на вооружение мобильный малогабаритный радиолокационно- приборный комплекс РНК-1 «Ваза», размещенный на автомобиле Урал-375. Не перечисляя состав комплекса и всех его ТТХ, упомянем лишь те, о которых I юидет речь в дальнейшем. 15 РЛС комплекса был предусмотрен ряд специальных мер по защите от пассивных и активных помех. Станция обеспечивала точность измерения координат со среднеквадратическими ошибками 1.5 ду. по угловым координатам и 15 м по дальности.

Испытания в условиях пассивных помех проводились по самолету Ил-28. Пассивные помехи создавались двумя самолетами Ил-28, оснащенными автоматами сброса помех ДСО-2И. В качестве помех использовались отражатели ДОС-17. Самолет-цель заводился в полосу помех через расчетное время полного раскрытия пачек помех с учетом их снижения но высоте и сноса ветром. Контроль за нахождением цели в помехах осуществлялся но индикаторам аэродромных РЛС управления полетами типа П-30 и П-15.

Ширина диаграммы направленности антенн этих станций составляла около 4,5 град. и. учитывая соотношение импульсного объема РЛС «Ваза» и ширины ДНА 11–15 (П-30), оценить с требуемой точностью нахождение самолета-цели предполагалось путем кратковременного переключения РЛС «Ваза» из режима СДЦ в амплитудный режим для корректировки положения цели в полосе помех. Но если в случае этих манипуляций цель сбрасывалась с автосопровождения, то залет считался незачетным по причине именно этого переключения. И в результате испытаний РЛС «Ваза», согласно выводам акта государственных испытаний, обеспечивала в режиме СДЦ сопровождение цели типа Ил-28 в условиях пассивных помех плотностью две пачки на 100 м пути.

Техническими условиями (ТУ) на РНК предусматривалось па больших контрольных испытаниях (ВКИ) образца проверять на соответствие заданным требованиям при одновременном воздействии на РЛС активных и пассивных помех. Однако из программы ВКИ который раз по представлению полигона заказывающим управлением исключался этот пункт из-за отсутствия аппаратуры создания активных помех. Но в 1969 г. через 10 лет после принятия на вооружение РНК-1 — Ваза», на полигоне было принято решение проверить РЛС в условиях пассивных помех.

В процессе этих испытаний была уточнена методика в части контроля нахождения самолета-цели в облаке (создаваемой полосе) помех. Методикой предусматривалось выведение сигнала от цели и помехи непосредственно после ПУПЧа. перед его поступлением на СДЦ, на встроенный в станцию осциллограф. Теперь положение цели в полосе помех корректировалось по сигналу на осциллографе без вынужденного переключения режимов работы РЛ((СДЦ- амплитудный).

57-мм зенитная пушка С-60

Результат оказался впечатляющим. Как только самолет-цель точно заводился в полосу помех, так автосопровождение цели срывалось. Вызванные представители завода-изготовителя и заказчика высказали для начала сомнение в квалификации войскового расчета, затем в правильности выбора позиции РПК-1, наконец, в нормальной работе автоматов сброса помех на самолетах-постановщиках и в соответствии техническим условиям дипольных отражателей ДОС 1.

Солдатский расчет РПК-1 заменили на заводской, как более квалифицированный. позиции PПK-1 сменили в соответствии с рекомендациями представителей завода и заказчика. Проверили работу автоматов сброса помех АСО-2И на соответствие ТУ и вручную пересчитали количество отражателей в пачке ДОС-17 (должно быть около 600000 иголочек). Однако устойчивого сопровождения цели в условиях пассивных помех плотностью две пачки на 100 м пути добиться так и не удалось.

Тогда экспериментальным путем было определено, что устойчивое сопровождение (с вероятностью 0,9) самолета типа Ил-28 осуществляется в помехах плотностью 1,1 пачки на 100 м пути, а самолета типа МиГ-17 — 0,7 пачки на 100 м пути.

Для определения этих показателей в межсезонный (осенне-весенний) период, когда аэродром на Донгузском полигоне, не имевший взлетно-посадочной полосы с твердым покрытием, не функционировал, приходилось использовать для полетов аэродром Эмбинского полигона, откуда самолеты могли выполнят! всего один залет, в то время как с местного — три. Все это привело к удлинению сроков БКИ (по заданию 3 месяца, а продолжались 9 месяцев.).

Несовершенство методики контроля нахождения самолета-цели в полосе помех, а также, видимо, неразумно сокращенные сроки проведения госиспытаний привели к неправильной (завышенной) оценке помехозащищенности РЛС-1 «Ваза», что могло сказаться на оценке возможностей в условиях боевого применения и. кроме того, это привело к излишним затратам средств и времени для правильной оценки помехозащищенности, корректировки ТУ и ТГХ.

И второй пример. Командование войск ПВО СВ и ГРАУ было обеспокоено проблемой проверки функционирования снарядов к 100-мм зенитной пушке КС-19, оснащенных радиовзрывателями (РВ) АР-21. Промах, при котором срабатывал радиовзрыватель с заданной вероятностью, был задан по самолету типа Пе-2. К началу 1970-х гг. таких самолетов просто физически не было, и использовать какие бы то ни было лабораторные методы для оценки функционирования РВ не представлялось возможным.

В 1976 г. была изыскана возможность поставки радиоуправляемой мишени (РУМ) М-28, созданной на основе самолета Ил-28, для проведения стрельб батареей 100-мм зенитных пушек снарядами, оснащенными РВ АР-21. Следует попутно заметить, что для обслуживания орудий директивой Главкома СВ был осуществлен призыв на кратковременные сборы т. н. «партизан» из запаса, проживающих на территории бывшего Приволжского военного округа. Хотя цель призыва была ясна — кратковременная служба в подразделении ПВО, зенитчиков среди призванных было около 10 %, а некоторые к моменту призыва вообще не служили в армии.

К боевым стрельбам была подготовлена батарея 100-мм зенитных пушек КС-19 с РНК-1 «Ваза» со счетно-решающим прибором «Буксир». Для более полного «использования» РУМ М-28 к стрельбам привлекалась также 6-орудийная батарея 57-мм ЗП С-60 с РПК-1 «Ваза». Орудия на огневых позициях были размещены так, чтобы обеспечивалась стрельба всеми орудиями до параметра. После параметра (вдогон) стрельба не велась по условиям техники безопасности. Перед боевыми стрельбами было проведено достаточное количество тренировок для обучения и обеспечения слаженности расчетов, а также для проверки материальной части в динамике по самолетам и оценки точностных характеристик. Руководство и обучение расчетов осуществлялось инженерами-испытателями полигона.

РУМ М-28 была выведена на боевой курс на высоте 5000 м и проведена с курсовым параметром 1000–1500 м. Всего было осуществлено дна вывода мишени на боевой курс. Стрельба обеими батареями велась в режиме «все данные от РПК» с максимальным темпом, начиная с максимальной дальности. Ни в первом, ни во втором боевом залете РУМ не было зафиксировано ни одного попадания, ни одного разрыва 100-мм снаряда с РВ АР-21.

После каждого залета оценивалось, на сколько сбивалось (нарушалось) при стрельбе ориентирование орудий. И оказалось, что при оборудовании огневых позиций согласно наставлению, закреплении лафетов в фунте сошниками, вбитыми в твердую сухую почву "по самое некуда", ориентирование 100-мм орудий нарушалось от силы отдачи при выстреле и достигало 100 ду. Несколько сошников было согнуто, как алюминиевые ложки «дембелями», и они были извлечены из станин с помощью автогена.

Таких идеальных, с точки зрения прочности фунта, условий, какие имели место жарким летом на целинной земле полигона, будет недоставать при использовании комплекса КС-19 в полевых условиях при ведении боевых стрельб войсками.

Известно, что техника определенного назначения достигает в своем развитии совершенства к моменту появления принципиально новой техники этого же предназначения. В ЗП КС-19 на период ее создания и принятия на вооружение (1948 г.) были учтены последние конструкторские решения, и она была признана совершенным образцом. Однако не было проверено должным образом крепление пушки на огневой позиции в полевых условиях, и эффективность системы, если бы она применялась в боевых действиях, была бы сведена к нулю.

вверху Представление художника о том, какой могла бы стать лазерная боевая станция в космосе оснащенная 5 МВт лазером с 4-м зеркалом. На рисунке показано, как устройство управления наводит пучок на цель

Анатолий Демин