Крупные изобретения. Можно ли найти автора?
Крупные изобретения. Можно ли найти автора?
Как известно, авторство и приоритет большинства изобретений определяется по заявке, поданной в патентную службу страны. Если заявка отвечает необходимым требованиям, а материал заявки на основании чётких критериев признан соответствующим понятию «изобретение», то вроде бы нет никаких оснований для сомнений в авторстве данного изобретения или его приоритете. Действительно, выданный охранный документ подтверждает авторство и приоритет данного способа или продукта. Но многие из таких изобретений оказываются лишь отдельными кирпичами в фундаменте крупных изобретений. Последние создаются в большинстве случаев в результате новационной деятельности не одного человека, а многих групп исследователей, ищущих истину, и порой не задумывающихся об изобретательстве вообще. Делается это на протяжении ряда лет и нередко сразу в нескольких странах.
Я хотел бы привести несколько примеров крупных изобретений, авторство и приоритет которых сразу, на вскидку, не определяются, и это требует проведения специальных исследований с мало предсказуемым исходом.
В качестве первого примера приведу магнетрон. Этот прибор вошёл сейчас в быт миллионов людей в виде источника СВЧ-энергии, используемого в СВЧ-печах для приготовления пищи. Там он работает в непрерывном режиме. Я не разрабатывал магнетроны, но эксплуатировал их длительное время примерно 60 лет назад. Но не об этом сейчас разговор, а о том, кто и когда его разрабатывал. Прежде всего, вкратце о том, что такое магнетрон. Магнетрон двухэлектродная электронная лампа, в которой электроны, летящие от катода к аноду, подвергаются воздействию как электрического, так и ортогонального магнитного поля. История магнетрона движется от простейшей модели со сплошным анодом до современных моделей многорезонаторных магнетронов. При наличии сплошного анода электроны движутся по кривым, близким к окружности с циклотронной частотой, зависящей от напряжённости магнитного поля. КПД этих ламп низкое, т. к. число работающих электронов (т. е. отдающих энергию) невелико. В многорезонаторных магнетронах анод представляет собой набор объёмных резонаторов, соединённых с межэлектродным пространством цепями. Электроны в этих лучах движутся по эпициклоидам, причём число «работающих» электронов резко возрастает, вследствие чего КПД может достигать 80–90 %.
История развития магнетронов как генераторов СВЧ-излучения преимущественно в дециметровом и сантиметровом диапазонах радиоволн прослеживается с начала 20-х годов прошлого столетия. В 1924 г. А. А. Слуцкиным и Д. С. Штейнбергом в Харьковском университете был разработан способ генерирования высокочастотных колебаний в магнетронах на волнах 7-50 см. Исследования магнетронного способа генерации на СВЧ велись в 20-х годах также Д. А. Рожанским, М. Т. Грековой, В. И. Калининым и др. Обратимся теперь к 30-м годам 20 в., когда создавались первые установки по радиообнаружению самолётов и первые РЛС. Пионерские работы в этой области датированы концом 1933 – началом 1934 г. Магнетроны для этих установок создавались в 1934 г. на волну 20 см мощностью несколько вт в кооперации нескольких организаций Ю. К. Коровиным, А. А. Шапошниковым, Ю. А. Кацманом. Практически одновременно создавалась установка в ЛЭФИ Б. К. Шембелем. Для неё был изготовлен магнетрон на волне 21–29 см с мощностью 10 вт. Магнетрон имел четырёхрезонаторный анод и КПД 35–45 %. В 1932 г. В. М. Мухин предложил устройство многорезонаторного магнетрона. Однако это предложение не было реализовано. В 1935 г. М. А. Бонч-Бруевич, выдающийся учёный, разработчик мощных ламп, охлаждаемых проточной водой и использовавшихся в радиовещательных станциях им. Коминтерна, Малого Коминтерна был назначен научным руководителем Ленинградского НИИ-9.
Существует версия, что он нарисовал на бумаге конструкцию многорезонаторного магнетрона. Факты говорят о том, что М. А. Бонч-Бруевич отстаивал идею построения будущей РЛС, использующей непрерывное излучение. Для этого он предложил сотрудникам НИИ-9 Н. Ф. Алексееву и Д. Е. Малярову разработать конструкцию и проверить на практике новый многорезонаторный магнетрон. Эта работа была выполнена в 1937–1938 г. В результате был перекрыт сантиметровый диапазон волн (1–9 см) с мощностью в непрерывном режиме от 100 до 300 вт и КПД порядка 20 %. Но практика настойчиво требовала создания магнетронов, работающих в импульсном режиме. Такие магнетроны были разработаны в конце войны и в послевоенный период и у нас, и за рубежом. Они давали в сантиметровом диапазоне 100–200 квт пиковой мощности при КПД 50–60 %. Говоря об истории развития магнетронной техники, необходимо отметить большой творческий вклад Н. Ф. Алексеева и Д. Е. Малярова. Но в литературе, особенно в 40-х и 50-х годах, этот вопрос у нас педалировался, вследствие чего создавалось впечатление, что указанные специалисты и являются истинными изобретателями магнетрона. Я был знаком с Н. Ф. Алексеевым, и задал ему вопрос: считает ли он себя автором изобретения. На что получил отрицательный ответ. Его понять можно, ибо факты истории игнорировать невозможно.
Ещё один пример связан с созданием телевизионной приёмной техники. Рождение электронного телевидения в нашей стране формально произошло в 1933 г., когда в недрах Центральной радиолаборатории (г. Ленинград) была образована лаборатория телевидения и электрооптики (ЛТЭ). Руководителем ЛТЭ стал В. А. Гуров. В группе телевидения этой лаборатории начинает работать А. А. Расплетин. В 1935 г. при активном участии А. А. Расплетина появилась первая электронная система телевидения с разложением изображения на 180 строк при кадровой частоте 25 гц. Нужно сказать, что наше телевидение не было в те годы изолированным явлением. Посетивший ЛТЭ В. К. Зворыкин познакомился с создателями нашей техники и рассказал о технических успехах американцев. В апреле 1936 г. А. А. Расплетин перешёл в НИИ-9 (г. Ленинград). Одной из первых работ после его перехода было создание телевизионного приёмника по заданию Всесоюзного радиокомитета (ВРК). Приёмник так и назывался ВРК. Его чёткость 240 строк. В работе наряду с А. В. Расплетиным участвовали В. К. Кенигсон, М. И. Товбин, С. А. Орлов. Приёмники ВРК размещались в Доме техники и Домах культуры Ленинграда. В 1937–1938 гг. А. А. Расплетин разработал первый вариант массового телевизионного приёмника ТН-1. В 1939 г. он вместе с Н. Ф. Курчевым и Е. Е. Фридбергом изготовил в экспериментальной мастерской 200 экземпляров телеприёмника 17 ТН-3 (телевизор настольный с диаметром экрана 17 см). На ленинградском заводе «Радист» было выпущено около 2000 телевизоров этой марки. Во время войны и особенно после войны А. А. Расплетин отошёл от гражданской телевизионной тематики. Как известно, после войны были разработаны и длительное время изготовлялись телевизионные приёмники КВН (бригада разработчиков под руководством В. К. Кенигсона), и Т-2 «Ленинград» (бригада разработчиков под руководством А. Я. Клопова).
В области телевизионного приёма А. А. Расплетиным в период 1934–1940 гг. были заявлены и получены охранные документы на устройства синхронизации, устройства для развёртки электронного луча, устройства для получения высокого напряжения. Это были главные, ключевые вопросы при создании средств телевизионного приёма. Но самого приёмника телевизионных сигналов в заявках не было. И это неспроста. Поэтому, отмечая, выдающийся вклад А. А. Расплетина в дело разработки и создания телевизионных приёмников, историографы называют его одним из пионеров отечественного телевидения.
Наконец, ещё один пример изобретательского уровня связан с созданием радиолокатора. История зарождения отечественной радиолокации в общих чертах изложена в литературе, но я сошлюсь на книгу очевидца тех событий, с которым был знаком, генерала М. М. Лобанова «Начало советской радиолокации» (М., Соврадио, 1975). Первая работа по радиообнаружению самолёта была выполнена в Центральной радиолаборатории (ЦРЛ, г. Ленинград) по заданию Главного артиллерийского управления в январе 1934 г. Группой ЦРЛ, которой руководил Ю. К. Коровин и в которую входили В. А. Тропилло, С. Н. Савин, В. В. Елизарова и А. Треумнов, была создана установка на волне 50–60 см и мощностью 0,2 вт. В установку входили кроме генератора суперрегенеративный приёмник и наземные параболические антенны с диаметром 2 м. При такой малой мощности, свидетельствовавшей о лабораторном характере установки, были получены следующие результаты: 1) Самолёт обнаруживался на расстоянии 600–700 м при высоте полёта 100–150 м, 2) Разнос передающего и приёмного зеркал составлял примерно 10 м, 3) Расстояния измерялись по биениям непрерывного излучения генератора и отражённого от самолёта сигнала (за счёт эффекта Допплера) в виде характерной пульсации интенсивности звука в наушниках при вхождении гидросамолёта в зону видимости. Это был первый опыт в отечественной радиолокации. Опыты Ю. К. Коровина продолжались до 1937 г. Так, с помощью М. Т. Грековой был разработан магнетронный генератор на волне 18 см с мощностью около 8 вт. Была получена дальность обнаружения самолётов 11 км (1936 г.).
Параллельно в январе 1934 г. ГАУ заключило договор с ЛЭФИ (г. Ленинград) на проведение работ по радиообнаружению самолётов. Директором ЛЭФИ был тогда академик А. А. Чернышев. Работы были поручены группе Б. К. Шембеля. К середине 1935 г. группой, в которую входили кроме Б. К. Шембеля М. Д. Гуревич (старший), Э. И. Голованевский, М. Г. Курилко, была разработана установка, состоящая из магнетронного генератора на волне 21–29 см с мощностью 10–15 вт, двух параболлических антенн с диаметром 2 м и регенеративного приёмника. Проведённые опыты показали дальность по самолёту У-2 до 8 км.
В 1935 г. был образован НИИ-9. В 1936 г. там была создана подвижная установка «Буря», позволившая получить дальность по самолётам Р-5 10–11 км. В начале 1934 г. П. К. Ощепков предложил использовать вместо непрерывного излучения импульсный метод радиообнаружения. В том же году М. Д. Гуревич (старший) собрал установку на магнетроне в дм – диапазоне волн для опробования импульсного метода. Однако засветка экрана отражением от близлежащего леса не позволила обнаруживать пролетавшие самолёты. В марте 1935 г. Управление ПВО заключило договор с ЛФТИ (г. Ленинград) по проведению исследований радиообнаружения самолётов. Директором ЛФТИ был тогда академик А. Ф. Иоффе. Работы поручались лаборатории Д. А. Рожанского. После смерти Д. А. Рожанского в сентябре 1936 г. руководителем работ в ЛФТИ стал Ю. Б. Кобзарев. Разработчики в ЛФТИ пришли к выводу, что для создания импульсных генераторов нужна специальная генераторная лампа. В. В. Цимбалин при консультации проф. К. Н. Циклинского и Д. А. Рожанского сконструировал лампу ИГ-7 на волну 3,5–5 м мощностью в импульсе до 50 квт. Затем была разработана лампа ИГ-8 этой же серии.
В середине 1938 г. на базе лампы ИГ-7 была разработана двухантенная установка. Передатчик метрового диапазона развивал мощность 40–50 квт в импульсе при анодном напряжении 15–20 кв. Антенна устанавливалась на высоте 12 м и была типа «волновой канал» с 5 директорами и 3 рефлекторами. Приёмник супергетеродинного типа. Приёмная станция относилась на 1000 м от передатчика. С помощью этой установки была получена дальность до самолёта 50 км при высоте полёта 1500 м. В 1939 г. усилиями ЛФТИ и НИИСКА был создан подвижный вариант станции, получивший условное название «Редут» (дальность до 100 км). В мае 1940 г. разработчики ЛФТИ решили трудную задачу и перешли к совмещённому, одноантенному варианту станции. В 1941 г. коллективу разработчиков Ю. Б. Кобзареву, П. А. Погорелко, Н. Я. Чернецову была присуждена Сталинская премия.
Речь до сих пор шла о создании и развитии станций дальнего обнаружения, т. е. систем «земля – воздух». Во время войны и в послевоенный период были созданы также радиолокационные системы «воздух – воздух» и «земля – земля». Наряду с импульсными РЛС продолжало развиваться и направление, связанное с непрерывным излучением.
Время от времени в печати, а также на различных собраниях и совещаниях поднимается вопрос о создателях отечественного радиолокатора. По этому поводу возникают дискуссии, порой переходящие в жаркие споры. Одни утверждают, что это безусловно группа Ю. Б. Кобзарева, другие, ссылаясь на историю (которую я вкратце изложил), с этим не соглашаются. Я должен сказать, что бывал у Ю. Б. Кобзарева в 50-х годах, когда он ещё работал в НИИ-244, а затем на его семинарах в ИРЭ и никогда не слышал ни от него, ни от его сотрудников, а также от его гостей утверждений типа «Ю. Б. Кобзарев – создатель (или автор) отечественной РЛС».
Позже, как сообщали некоторые источники, Ю. Б. Кобзарев якобы жалел, что не подал в своё время заявки на изобретение. Но существует ещё экспертиза в патентном ведомстве. И какой ответ она бы дала – положительный или отказной – можно только гадать.
Никто, как мне кажется, не отрицает выдающийся вклад Ю. Б. Кобзарева и его сотрудников в общее дело, но вопрос об авторстве более сложный. Мне представляется, что успех был достигнут трудом многих упомянутых и безвестных людей, озарённых общей идеей.
Данный текст является ознакомительным фрагментом.