Ночные прицелы

We use cookies. Read the Privacy and Cookie Policy

Ночные прицелы

Возможность ведения боевых действий ночью, в условиях ограниченной видимости ценилась всегда. И всегда одной из главных проблем тут была возможность ведения прицельной стрельбы. О значении ночных прицелов свидетельствуют хотя бы постоянные упоминания их в оценках опыта второй чеченской кампании.

Крепящиеся на оружие съемные фонари-осветители, люминесцентные насадки или вставки для механических прицельных приспособлений предлагались еще в начале XX в. Но подлинное решение лежало в иной области спектра – инфракрасной. Инфракрасная (ИК) область спектра занимает диапазон длин волн от 0,7 до 3 мкм (ближняя или «коротковолновая» зона ИК диапазона) и от 3 до 5 мкм (начало средней зоны ИК диапазона). В основу работы таких оптико-электронных приборов положен принцип преобразования ИК изображения в видимое. Основой конструкции служит электронно-оптический преобразователь (ООП), общая схема которого была разработана еще в 1930-е годы В.К. Зворыкиным. Работа ООП основана на явлении внешнего фотоэффекта. Известно, что световой поток можно рассматривать и как электромагнитную волну, и как поток частиц – квантов. Способность квантов «выбивать» электроны с поверхности какого-либо вещества и определяет фотоэффект, причем «выход» электронов зависит от плотности и интенсивности светового потока. Волновые свойства света проявляются в зависимости от чувствительности вещества к фотоэффекту от длины световых волн.

ЭОП представляет собой электровакуумный прибор, на передней стенке которого нанесен полупрозрачный фотокатод, на задней – люминесцентный экран. ИК лучи, падая на фотокатод, выбивают из него электроны, которые ускоряются электрическим полем, фокусируются электронной линзой, образованной специальными электродами, и устремляются к экрану. Ударяясь в экран, они вызывают его зеленоватое свечение. Так на экране формируется видимая глазом «картинка».

Схема трехкамерного ЭОП с оптоволоконными системами: I, II, III – первая, вторая и третья ступень усиления; 1 – ИК излучение, 2 – волоконно-оптическое входное окно, 3 – фокусирующие электроды, 4 – волоконно-оптическая соединительная плата, 5 – волоконно-оптическое выходное окно, 6 – выходное изображение видимого диапазона, фосфорный (люминесцентный экран)

Для получения достаточно яркого изображения требуется либо подсвечивать местность ИК прожектором, либо дополнительно усиливать яркость, обеспечиваемую излучением ночного неба, светом звезд, Луны.

По первому способу работают так называемые «активные» приборы ночного видения («приборы нулевого поколения», как их иногда называют). К ним относились американский «Снайперской» и германский «Вампир» времен Второй мировой войны. Оба включали «телескоп» с ЭОП, ИК прожектор и носимый блок питания напряжением около 30 кВ. При кратности увеличения от4х до 6х приборы действовали на дальности до 60 м, т. е. на дальностях ближнего боя.

Этот ранний этап развития приборов ночного видения характеризовался использованием ЭОП с кислородно-серебряно-цезиевым или кислородно-серебряно-цинковым фотокатодом и прожекторов на основе электрической лампы и ИК фильтром.

ЭОП нулевого поколения продержались на вооружении достаточно долго – тот же «Снайперской», например, оставался на вооружении армий ряда стран еще в 1960-е годы. Но к тому времени уже не были терпимы такие недостатки активных прицелов, как значительные размеры и масса, демаскирующее действие ИК прожектора, образование помех от пыли или тумана на краях поля зрения.

Среди пассивных (бесподсветных) приборов с усилением естественной ночной освещенности выделяют несколько поколений, отличающихся прежде всего типом электронно-оптических преобразователей. Тут стоит вспомнить, что означают некоторые приводимые далее характеристики. Так, коэффициент усиления света показывает, во сколько раз световой поток, наблюдаемый на выходе из окуляра ПН В, превышает световой поток, поступающий на вход оптической системы прибора от объекта наблюдения. Как и для оптико-механических приборов, для оптико-электронных одной из главных характеристик является разрешающая способность. Разрешающую способность приборов, включающих ЭОП, чаще оценивают не в угловых величинах, а числом чередующихся светлых и темных линий (штрихов), укладывающихся на 1 мм испытательного объекта. Разрешающая способность зависит и от оптической системы прибора, и от разрешения ЭОП.

Итак, в бесподсветных приборах первого поколения (I) происходит многокаскадное усиление яркости (это был уже существенный шаг вперед по сравнению с ЭОП по схеме Зворыкина). Первые бесподсветные каскадные приборы ночного видения все еще отличались большими размерами из-за необходимости охлаждения ЭОП и высоковольтных источников питания. Решающий сдвиг здесь связан с введением многощелочного фотокатода, который имел большую чувствительность, на несколько порядков более низкий темновой ток и не требовал охлаждения. Вместе с дальнейшей работой по оптике и миниатюризацией источников питания это позволило создать новые стрелковые прицелы и при этом уместить весь комплекс прицела в одном корпусе.

Принцип работы усилителя на микроканальной пластине:

1 – фотокатод, 2 – микроканальная пластина, 3 – люминесцентный экран, 4 – стенка микроканала, 5 – электрод, 6 – выходной поток электронов, 7– попадание первичного электрона, 8 – вторичные электроны

В нашей стране система ПНВ этого поколения сформировалась к концу 1960-х годов. Вошел в эту систему и ночной прицел НСП-3 для автомата. И все же ЭОП первого поколения был свойственен ряд недостатков. Они давали недостаточно яркую и контрастную «картинку». Разрешение получалось весьма неравномерным – 25–36 штрихов на миллиметр по центру и 5 штрихов на миллиметр по краю поля зрения. Прицелы были весьма чувствительны к засветке яркими источниками света – например, вспышкой выстрела. Да и стеклянные баллоны ЭОП были чувствительны к импульсу отдачи оружия.

Дальнейшая доработка, связанная с повышением ИК чувствительности и помехозащищенности приборов, увеличением поля зрения и т. д., привели к появлению в 1970-е годы новых ПНВ того же поколения, в число которых вошел и ночной универсальный стрелковый прицел НСПУ (1ПН34, тема «Альфа») с трехкаскадным ЭОП. Для предохранения от засветки в нем служит ирисовая (лепестковая) диафрагма. Для повышения контрастности изображения при наблюдении на зеленом фоне при повышенной освещенности служит красный светофильтр, при слабом тумане или дымке – желтый. Масса прицела – 2,2 кг, кратность увеличения – 3,5х, угол поля зрения – 5,4°. НСПУ позволяет вести ночью огонь на дальности прямого выстрела оружия. В лунную ночь или при использовании подсветки дальность возрастает, при низкой облачности, задымлении – сокращается. Усовершенствование ЭОП и переход в электрической части на малогабаритную элементную базу позволил сделать ПНВ легче и экономичнее (а время непрерывной работы прибора на одном элементе питания увеличивает автономность подразделения) – пример тому унифицированный прицел 1ПН58.

В качестве аналога можно упомянуть американский AN/PVS-2, также выполненный на основе трехкаскадного ЭОП с электростатической фокусировкой. Кратность увеличения этого прицела – 4х, поле зрения – 10,4– 10,7°, масса – 2,6 кг, дальность действия, в зависимости от освещенности – 300–400 м. Для увеличения энергии световых лучей, попадающей на вход прибора, и сокращения при этом осевой длины прицела, используются и зеркально-линзовые объективы как, например, в германском «Орион-80».

В ЭОП поколения «1+» уже использовались металл и керамика, а для формирования изображения и сопряжения экранов и фотокатодов смежных преобразователей ввели оборачивающие устройства на основе пластин из оптоволоконных элементов (волоконная оптика использовалась уже в упомянутом AN/PVS-2). Повысился коэффициент полезного действия усилителей и четкость изображения. Намного возросла устойчивость к импульсу отдачи. Увеличилось и разрешение – до 50 штрихов на миллиметр в центре поля зрения и до 28 по краям. Как видим, и соотношение между разрешением в средней части «картинки» и по ее краям улучшилось.

Электронно-оптический преобразователь III поколения с фотокатодом на арсениде галлия: 1 – фотокатод, 2 – микроканальная пластина, 3 – экран, 4 – волоконно-оптическая система оборота изображения на 180°, 5 – источник питания

Второе поколение (II) составили появившиеся в 1970-е годы приборы с усилителем на микроканальной пластине (МКП). МКП представляет собой плоский диск из полупроводникового материала с множеством каналов, внутренняя поверхность которых покрыта веществом, обладающим вторичной электронной эмиссией. Электроны, выбиваемые с фотокатода, попадают в открытый торец микроканала, выбивая из стенок вторичные электроны. То есть каждый микроканал МКП работает как фотоумножитель, лавинообразно увеличивающий число выбиваемых электронов. Диаметр и число каналов подбираются из соображений лучшей разрешающей способности и прочности МКП. Диаметр каналов составлял сотые доли миллиметра. Коэффициент усиления яркости вырос более чем в 20 раз по сравнению с поколением «1+» – для поколения «1+» он не превышал 1000, у поколения «II» достиг 20 000. Разрешение увеличилось до 30–50 штрихов на миллиметр практически по всему полю зрения. Исчезли характерные для поколений «I» и «1+» искажения изображения, появилась автоматическая регулировка яркости изображения. Преимуществом усилителя яркости на МКП является также меньшая чувствительность к засветкам – МКП «локализует» световые помехи, не вызывая засветки всего поля зрения. Кроме того, применение МКП уменьшает размеры прибора.

К пассивным прицелам на МКП относится отечественный НСПУ-3 (1ПН51), обеспечивающий надежное обнаружение человека на дальности до 300–600 м. Масса НСПУ-3 – 2,1 кг (вместе с источником питания на 6,25 В), полная длина – 340 мм, кратность увеличения у НСПУ-3 – 3,6х, угол поля зрения – 9,5°.

К поколению «II» относится и американский AN/ PVS-3A с кратностью увеличения 4х, полем зрения 10°, массой 1,45 кг и длиной 330 мм. Прицел обеспечивает стрельбу по живой силе на дальности до 150–250 м. А английский М1500 при кратности увеличения Зх, массе 1 кг и длине 265 мм действует на дальности до 500 м.

В середине 1990-х годов появились ПНВ на основе ЭОП поколения «П+». Создание многощелочных фотокатодов с повышенной чувствительностью, улучшение оптических систем и позволило в этом поколении качественно улучшить характеристики приборов усилительного типа, повысить разрешающую способность – не менее 45 штрихов на миллиметр. Причем высокое разрешение сохранялось даже при низкой освещенности (свет звезд, например). Появилась возможность использовать светящиеся прицельные марки.

ЭОП поколения «П+» использован, например, в экспортном прицеле NV/S-17, предлагаемом «БелОМО» для автоматического стрелкового оружия. При массе 1,2 кг этот прицел имеет кратность увеличения 3,5х и поле зрения 12°.

Поколение ЭОП «II супер» отличается еще большей чувствительностью фотокатода и разрешением около 55 штрихов на миллиметр.

Уменьшение размеров и электропотребления ЭОП позволило выполнить ночные прицелы для стрелкового оружия в меньших габаритах и с массой менее 1 кг.

Ночные бесподсветные прицелы пришли и на «коммерческое» оружие. Пример тому – прицел ПОН-5 с электронно-оптическим преобразователем I поколения, с подсветкой прицельной сетки

Модульный принцип построения позволил создать новые семейства ночных прицелов для различных видов оружия – как, например, российские прицелы серии 1ПН93, включая прицел 1ПН93-3 для применения со снайперской винтовкой СВД. С другой стороны, появилась возможность использовать ночные прицелы как «ночную приставку» к установленному на оружии оптическому прицелу.

Зависимость дальности действия и качества изображения ПНВ усилительного типа от уровня естественной освещенности не дает забыть о необходимости дополнять приборы осветителями. Правда, теперь это миниатюрные, встраиваемые непосредственно в корпус ПНВ модули на основе ИК полупроводниковых лазеров или светодиодов.

Так, например, российский унифицированный прицел НСПУ-5 (1ПН83), выполненный на основе ЭОП поколения «II», имеет встроенный в корпус ИК лазерный осветитель («подсветчик»). Диаметр подсвечиваемой на дальности 300 м зоны – 5–6 м. В сочетании с автоматической регулировкой яркости и регулируемой стрелком яркостью прицельной марки это позволяет работать в широком диапазоне внешних условий – от полнолунных ночей (когда достаточно естественной ночной освещенности) до почти полной темноты, опознавая цель типа «человек в полный рост» на дальности до 300 м. Кратность увеличения НСПУ-5 – Зх, поле зрения – 7°, масса прицела – 1,45 кг, длина – 300 мм.

Между тем еще в середине 1980-х годов появились фотокатоды со светочувствительным материалом на основе арсенида галлия, обладающие большей чувствительностью и «выходом» электронов. Их применение в сочетании с новыми вакуумными технологиями позволило создать ЭОП поколения «III» – также с использованием МКП. Спектральная чувствительность ЭОП сместилась несколько дальше в ИК диапазон, а это повысило контрастность изображения. Параллельно улучшалась оптическая система, дабы полнее реализовать достоинства нового поколения ЭОП. Чувствительность ПНВ поколения «III» выросла более чем на треть, выросло и разрешение, так что они могут работать при меньших уровнях освещенности (в темные ночи, в подземных сооружениях без освещения). Дальность действия возросла на 30 %, так что прицельная дальность стрельбы ночью приблизилась к дневной.

Уже в последние годы XX в. появились приборы поколения «Ш+» с увеличенной вдвое против поколения «III» чувствительностью и разрешением 55 штрихов на миллиметр и более.

Следующим шагом стали применяющиеся с 1970-х годов тепловизионные приборы (ТПВП). Эти приборы «переводят» в видимую область спектра не отраженные лучи, а собственное тепловое излучение людей, техники, активных приборов. Это излучение занимает значительную часть ИК диапазона, именуемую иногда «тепловым И К диапазоном». Нашли применение спектральные диапазоны 3–5 мкм и 8—14 мкм, соответствующие сравнительно широким «окнам прозрачности» – участкам спектра, в которых пропускание лучей атмосферой лучше. К тому же максимум теплового излучения человеческого тела приходится ориентировочно на длину волны 9,3 мкм. В этих диапазонах работают используемые фотоприемники (детекторы). Дальность действия ТПВП не зависит от уровня естественной ночной освещенности, они сохраняют работоспособность, в условиях засветок интенсивными источниками света. Тепловое излучение хорошо распространяется в условиях пониженной прозрачности атмосферы, задымления, через сети, ветви, а это позволяет ТПВП работать в тумане, при постановке обычных дымовых завес обнаруживать замаскированные цели. Поскольку интенсивность и спектр теплового излучения, испускаемого нагретым телом, зависят от свойств тела и его температуры, изображение получается довольно контрастным и позволяет выделять нужный объект на фоне других нагретых тел, хотя получаемая картинка менее привычна для восприятия, чем изображение, формируемое ПНВ усилительного типа.

Для улавливания теплового излучения объектов используются решетки-матрицы миниатюрных детекторов, которые преобразуют ИК сигналы в электрические, подаваемые на предварительный усилитель. Здесь они перемножаются и с помощью логической схемы преобразуются в сложный видеосигнал. Развитию и широкому применению тепловизионных приборов способствовало быстрое развитие микропроцессорной техники, цифровых методов обработки и визуализации сигнала. Портативные тепловизионные приборы уже нашли применение в комплексах разведывательной аппаратуры, в танковых системах управления огнем, в ПТРК, со стрелковыми прицелами дело чуть сложнее. Хотя тепловизионные прицелы уже включаются в комплект снайперских винтовок нормального и крупного калибра, предлагаются для пулеметов и гранатометов, цена их пока многократно превосходит цену самого оружия. Возможности улучшения характеристик ТПВП, включая уменьшение их размеров, массы и энергопотребления ожидают, в частности, от замены линеек детекторов и оптико-механической системы развертки изображения приборами на основе фокально-плоскостных матриц (с использованием приборов с зарядовой связью), не требующих такой механической развертки и устройств глубокого охлаждения. Не стоит, правда, доверять заявлениям о ТПВП, как об «абсолютном средстве наблюдения и прицеливания» – хотя тепловидение действительно позволяет обнаруживать цели за легкими укрытиями, «видения сквозь любые стены» оно не дает.

Интересны комбинированные (с двумя или более каналами, но единым входом) и комплексированные (с отдельными входами каналов) прицелы «день/ночь», отвечающие требованиям всепогодности, круглосуточности и высокой помехозащищенности. Так, в прицеле французской фирмы «Сопием» дневная ветвь расположена над ночной, а изображение ее проецируется на окуляр через зеркало и призму. В качестве ночной ветви может использоваться трубка с ЭОП поколений «II» или «III». В «модульной прицельной системе» F7201 американской компании ITT модуль ЭОП поколения «III» может вставляться между трубкой с прицельной сеткой и окуляром оптического прицела. Примером отечественного комбинированного прицела может служить ПОНД-4. В прицеле используется ЭОП поколения «П+» с прямым переносом изображения, мультищелочным фотокатодом и усилителем на МКП, автоматическая регулировка яркости. Кратность увеличения обоих каналов – 5х, поле зрения – 6,5° («день») и 8° («ночь»), масса прицела – 1,75 кг, напряжение источника питания – 3 В. Переключение каналов производится рычажком.

Далее мы рассмотрим ряд состоящих на вооружении и опытных снайперских винтовок различных стран мира.

Данный текст является ознакомительным фрагментом.